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High-field fast-risetime pulse failures in 4H- and 6H-SiC pn junction diodes
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We report the observation of anomalous reverse breakdown behavior in moderately doped

(2-3x 1017 cm -3) small-area micropipe-free 4H- and 6H-SiC pn junction diodes. When measured
with a curve tracer, the diodes consistently exhibited very low reverse leakage currents and sharp

repeatable breakdown knees in the range of 140-150 V. However, when subjected to single-shot
reverse bias pulses (200 ns pulsewidth, 1 ns risetime), the diodes failed catastrophically at pulse

voltages of less than 100 V. We propose a possible mechanism for this anomalous reduction in

pulsed breakdown voltage relative to dc breakdown voltage. This instability must be removed so

that SiC high-field devices can operate with the same high reliability as silicon power devices.

[S0021-8979(96)06114-2]

I. INTRODUCTION

The inherent physical properties of silicon carbide (SIC)

appear to be extremely well suited for power semiconductor
electronic' devices. Theoretical appraisals of the characteris-

tics and applications of SiC power devices have suggested
that once silicon carbide technology matures sufficiently to

overcome some developmental obstacles, SiC may supplant
silicon in many high-power electronic applications. 1'2 How-

ever. these analyses are primarily based on the numerical

substitution of siC physical properties into existing semicon-
ductor device models. These models have limitations how-

ever, as they clearly do not take into account all behaviors of

an actual physical SiC device. One behavior crucial to power

device reliability that has necessarily been assumed to date is
that the breakdown behavior of SiC pn junctions will (after

technology improvements eliminate all crystalline defects

such as micropipes) be simil_ to silicon-based pn junctions.

Silicon pn junctions are highly reliable because they exhibit

stabilizing properties such as positive temperature coefficient
of breakdown voltage. 3-5 The experimental work presented

in this article casts some doubt upon the presumption of

siliconlike breakdown behavior for all SiC pn junctions. In

particular, we will show that in at least some (but nOt neces-

sarily all) cases, the breakdown behavior of 4H- and 6H-SiC

pn junctions is strikingly and catastrophically different from
the stable breakdown behavior taken for granted in silicon

power devices.

II. EXPERIMENT

A. Device fabrication

The SiC homoepilayer structure shown in Fig. 1 was

grown by NASA Lewis on substrates cut from commercially

available 6 p + 4H and 6H silicon-face SiC substrates polished

30-4 ° off the (0001) SiC basal plane. The atmospheric pres-

sure chemical vapor deposition (CVD) system, gases, and
general growth procedures used are described elsewhere. 7-9
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Processing of the 4H and 6H samples was done in parallel,

with pattern definitions, metallizations, etches, and oxida-

tions being done simultaneously. To begin the postgrowth
diode fabrication, a 2000 /_ thick aluminum etch mask,

which defined circular and square diode mesas ranging in

area from 7x10 -6 to 4;<10 -4 cm 2, was applied and pat-

terned by metal liftoff. Diode mesas were defined by etching

to a depth of --1 /zm using reactive ion etching (RIE) with

90% CHF3--10% Oz at 400 W rf with a chamber pressure of
150 mTorr. The etch mask was stripped, and the samples

were sequentially cleaned with acetone, methanol, 3 NHnOH

: 3 H202 : 10 HzO, HF, and 3 HC1 : 3 H202 : 10 H20 prior

to undergoing wet thermal oxidation for 4 h at 1150 °C. Af-
ter the wafers had been patterned for topside contacts, vias

were etched in the oxide using 6:1 buffered HF solution.

Gold contacts were then e-beam deposited and liftoff pat-

terned for topside contacts and blanket evaporated for back-
side contact.

B. dc-measurements

Room temperature I-MHz capacitance-voltage mea-
surements on a few large-area diodes estimated the 0.6/zm

thick n-layer doping at 2× 1017 and 3× 1017 cm -3 for the 4H

and 6H devices, respectively. All current-voltage (l-V)
measurements were carried out in the dark at room tempera-

ture on a probing station using either a Tektronix 576 curve
tracer or a Keithley 237 source-measure unit. Over 50 de-

vices were dc tested at room temperature, and typical linear

scale and semilogarithmic scale I-V characteristics are

shown in Fig. 2.

Since crystal defect densities of SiC epilayers on com-
mercial wafers are known to be on the order of 104 cm -2,

only devices with areas less than 5× 10 -5 cm 2 were selected

for this work, so that around half should be free of mi-

cropipes and dislocations. 1° Furthermore, any diode showing
dc characteristics that deviated in leakage current or sharp-

ness of breakdown knee from the nominal I-V characteris-

tics of Fig. 2 was thrown out from the working data set

presented in this article. Over half of the small-area devices
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FIG. 1. Cross-sectional structure of experimental 4H- and 6H-SiC diodes.

tested in this work, exhibited very well-behaved dc charac-

teristics nearly identical to Fig. 2.
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FIG. 2. Typical room-temperature l-V characteristics of 1.96× 10 -5 cm 2

area SiC diodes. (a) Linear 4H-SiC characteristic and (b) linear 6H-SiC

characteristic measured with curve tracer. (c) Semilogarithmic reverse char-

acteristics measured with source-measure instrument.

For the well-behaved devices, the reverse breakdown

knee voltage varied only slightly as a function of position on
the wafer, t40-146 V for the 4H diodes, and 146-149 V for

the 6H diodes. This small variation is consistent with doping
and thickness nonuniformities that have been observed in

similar samples produced by the growth system employed in

this work. These de-measured breakdown voltages are con-
sistent with comparably doped SiC junction breakdowns re-

ported in the literature. HA2

C. Pulse testing

1. Pulse testing procedure

Pulse bias testing was carded out using a conventional

charge line circuit, depicted in Fig. 3. This circuit nominally
stressed the device under test with rectangular-shaped pulses

of 200 ns width (with _ 1 ns risetime/falltime) on a manually

triggered single-shot basis. The pulse voltage amplitude was

controlled by adjusting the high-voltage supply, which

charged a 1/2 in. 150 ft semirigid transmission line. The

input voltage pulse to the device under test was formed by

the discharge of the semirigid coax when the mercury vapor

switch was momentarily triggered.

Device voltage and current waveforms were simulta-

neously recorded and stored for each applied pulse using a

dual-channel digitizing oscilloscope. Great care was taken to

ensure that the magnitude of the current and voltage data
recorded on the oscilloscope were accurate to within 10%,

and the circuit attenuator calibrations were verified through

independent measurements periodically. Since the current

probe employed in this work could not measure currents be-

low 100 mA, it was not possible to record the time evolution

of small reverse leakage currents under pulsed conditions.
The input voltage amplitude of the first pulse (or

"shot") applied to a given diode was usually less than half

of the de-measured breakdown voltage. Following digital

storage of the device voltage and current waveforms re-
corded with each shot, the dc I-V characteristics of the di-
ode were rechecked with the curve tracer. If the device char-

acteristics remained unchanged, the supply voltage of the

pulse circuit was increased, and an additional shot was taken

at a higher voltage pulse amplitude. This procedure was re-

peated until diode damage was observed by a change in the
dc I-V characteristics.

2. SiC diode pulse results

A series of pulse-test data taken from a 4H-SiC diode is

shown in Fig. 4. This data is representative of all pulse data
collected on some 20 SiC diodes of both polytypes. As ex-

pected, displacement current spikes associated with the ris-
ing and falling edges of the voltage pulse are observed, as

well as nonideal transmission-line reflection effects apparent

in the 200-600 ns time range. The pulsed results in Figs.

4(a) and 4(b) are consistent with the measured dc I-V data
in that there is no detectable conduction current as the ap-

plied voltage pulse amplitude is increased from 72 V [Fig.
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FIG. 3. Experimental apparatus employed to measure response of diodes to

fast-risetime pulses.

4(a)] to 83 V [Fig. 4(b)]. Since no conduction current is

drawn, the amplitude of the device voltage waveform
matches the input voltage pulse amplitude. However, when

the input pulse amplitude was increased for the third shot to

94 V [Fig. 4(c)], the measured voltage across the device

collapsed, while the conduction current shot up.

The pulse-induced breakdown observed at less than 70%
of the de-measured breakdown voltage is anomalous, since

the de-measured current (Fig. 2) at 100 V was less than 1

/zA. Curve tracer characterization immediately following this

• pulse revealed that the diode had catastrophically failed and
became a resistor instead of remaining a rectifying junction.

The Fig. 4(c) data indicates junction breakdown occurred in

20 ns or less.

The general results shown in Fig. 4 were found for all

diodes tested in both 4H and 6H polytypes. All SiC devices

failed catastrophically at pulse voltages that were only 60%-

80% of the de-measured breakdown voltage. Aside from dis-

placement current observed at the rising and falling edges of
the pulse, the conduction current flowing through these very
small-area diodes before failure was too small to detect with

the existing current probe. Microscopic examination of all

failed devices revealed highly localized damage to the device

mesa and contact, consistent with the two typical examples

shown in Fig. 5. This strongly suggests that a current-

filamentation type failure occurred in the bulk of the
device. 13'14When a filament occurs, the current density in a

localized spot drastically increases, greatly stressing the

junction material, often to the point of failure.

3. Silicon diode pulse results

We also conducted pulse measurements on well-

characterized silicon diodes to confirm that our pulse-test

apparatus could properly record the stable reverse avalanche
breakdown behavior that is known to exist in silicon pn

junctions. 3-5 Both packaged and unpackaged (probe-tested)
silicon devices exhibited the general breakdown behavior

displayed in Fig. 6. Figure 6 shows the series of device volt-

age and current traces recorded as a function of increasing

input pulse amplitude from a packaged silicon pn junction
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FIG. 4. Voltage and current transient response of 4H-SiC diode when sub-

jected to 200 ns duration input pulse amplitudes of (a) 72 V, (b) 83 V, and

(c) 94 V. The 94 V pulse failed the diode catastrophically, even though dc

testing suggests the device should not fail until the pulse amplitude exceeds
140 V. Similar results were recorded for every 4H- and 6H-SiC diode pulse

tested in this work.

diode whose curve-tracer de-measured breakdown voltage

was 150 V. No measurable current (neglecting displacement

current at the pulse edges) was observed for any input pulse

amplitudes below the de-measured breakdown voltage of

J. Appl. Phys., Vol. 80, No. 2,15 July 1996
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FIG. 5. Photomicrographs of 50 ¢zm diam 4H-SiC diodes following.pulse
failure. The localized damage occurring in the bulk mesa regions strongly
suggests a current-filamentation failure mechanism. The majority of the con-
tact was destroyed in device (a), while the scratch mark left by the probe tip
is evident in device (b).

150 V [Fig. 6(a)]. As the input voltage pulse amplitude in-

creased sufficiently beyond 150 V, current flow consistent
with the 150 V dc breakdown voltage knee is observed [Figs.

6(b) and 6(c)]. With significant currents flowing through the
diode, the measured voltage waveform across the diode

clamped in the neighborhood of 150 V, despite the fact that

the input pulse amplitude (which can be measured "open
circuit" when no device under test is present) had been in-

creased to 225 V in Fig. 6(c). Prior to the 240 V input pulse

that failed the diode [Fig. 6(d)], the dc-characteristics mea-

sured on the curve tracer between pulses remained un-

changed from the initial I-V characteristic. Diode failure
occurs at t=40 ns in Fig. 6(d), as clearly evidenced by the

voltage collapse and increase in current.

Figure 6(c) clearly shows the classic silicon behavior of

positive temperature coefficient of breakdown voltage in that
as the device heats up over the 200 ns pulse duration, the

current flow through the device decreases while the voltage
across the device increases. Because current flow decreases

as junction temperature rises, the property of positive tem-

perature coefficient of breakdown voltage in silicon junctions

prevents the formation of damaging high-current filaments at

junction hot spots. In other words, it forces breakdown cur-
rent to flow relatively evenly distributed across the entire

area of the silicon diode junction (bulk breakdown), as op-

posed to focusing current flow at a localized hot spot which

would occur if negative temperature coefficient behavior

were present. The excellent stability and durability of the

Fig. 6 silicon pn junction enables it to reliably withstand

input pulse amplitudes of nearly 150% of the dc-measured

breakdown voltage.

III. DISCUSSION

A. Relevance of findings to SiC power device
technology

The contrasting experimental pulse-testing results be-

tween 150 V rated silicon and SiC diodes help illustrate the

great importance of stable breakdown behavior in semicon-

ductor power devices. Silicon power devices exhibit stable

reverse breakdown properties, such as positive temperature

coefficient of breakdown voltage, that permit them to with-

stand overvoltages (i.e., glitches, transients, etc.) that com-

monly occur in power system circuits, t5 In other words, they

can be rated for highly reliable operation at voltages near

their avalanche breakdown voltage, because they can safely

recover without damage from occasional brief bias excur-

sions that take them into avalanche breakdown. The silicon

diode of Fig. 6 clearly exhibits this behavior for both dc and

fast-risetime pulse testing.

At first glance, the SiC diodes may appear to exhibit

somewhat stable breakdown behavio r, as the dc-measured

I-V characteristics of Fig. 2 misleadingly suggest, since

they exhibit a sharp reverse knee that can be repeatedly

traced. When subjected to fast-risetime pulses however, the

SiC diodes tested in this work failed catastrophically from a

single 200 ns input pulse with amplitude significantly less

than the apparent dc breakdown voltage. Since the time lead-

ing to failure is extremely fast [<20 ns in Fig. 4(c)], the

energy leading to failure is very small, indicative of unstable
device behavior.

Clearly, the particular SiC devices tested above cannot

be considered reliable if a single impulse glitch of modest

(i.e., -30% below dc breakdown) voltage can catastrophi-

cally fail every diode with very low energy. Since such im-

pulse glitches occur in many kinds of power systems, it is

unlikely that SiC power diodes exhibiting the unstable break-

down properties observed in this work could be operated

reliably in a system at bias points anywhere near the dc

breakdown voltage the way that silicon diodes are routinely

operated. Furthermore, circuits would have to be carefully

designed to insure that unstable SiC diodes would never see

a single impulse glitch of sufficient amplitude to cause fail-
ure. Whether this involves the use of additional protection

circuitry, or significant device voltage derating, or both, it is

likely that there will be a significant performance, cost,

and/or reliability penalty associated with compensating

power circuits for unstable device breakdown behavior.
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FIG. 6. Voltage and current transient response of a 150 V, 10 mA silicon diode when subjected to 200 ns duration input pulse amplitudes of (a) 125, (b) 155,

(c) 225, and (d) 240 V. The positive temperature coefficient of breakdown voltage behavior is readily evident in part (c). The 240 V pulse failed the diode

catastrophically at t=40 ns in part (d).

B. Proposed instability mechanism

The results above have only shown unstable behavior for

two specific sets of SiC diodes. It is important to ascertain
the cause of this behavior and whether it applies to all SiC

diodes in general. Toward this end, we have initiated further

experimental and theoretical investigations. Notwithstanding
the future outcome of these further investigations, we have

developed a preliminary working hypothesis as to the source
of the SiC diode pulse-bias instabilities observed in the ini-

tial work reported in this article. While the theory is based

upon fundamental differences between Si and SiC material

properties, it suggests that SiC diodes with stable siliconlike
breakdown properties may be realizable with proper device

design and technology improvements.

There is extensive literature on the physics of breakdown
in semiconductors, .specifically including the breakdown be-

havior of silicon pn junctions. 3-5A4 A significant difference
between Si and SiC is that in most silicon devices, it is taken

for granted that all carriers are fully ionized over the normal

operational temperature range including room temperature.

In silicon carbide, the dopants are energetically deep enough

that a nontrivial percentage are un-ionized at room tempera-

ture resulting in their exclusion from the transport process. 16

Also, SiC crystal growth technology is not yet mature, re-

suiting in the presence of deep-level centers. 17-19 We believe

that both deep-levels and incomplete ionization of dopants

might contribute to the unstable SiC breakdown behavior
observed in this work.

The band diagrams of Fig. 7 illustrate part of our work-

ing theory for the fast-risetime pulse instability observed in
the SiC diodes of Sec. II C 2. For simplicity, only donoflike

centers and electrons in a partially frozen-out n-type region

of a junction will be considered in the following discussion.

Nevertheless, the basic mechanism can also be applied to

various permutations of centers (donorlike and acceptorlike)

and carriers in any rectifying junction.

Before bias is applied to the SiC sample, there are a
substantial number of carriers occupying un-ionized donors

and deep-level defects in quasineutral regions near the deple-

tion region edge [Fig. 7(a)]. When a fast-risetime bias pulse

is applied, the emission of trapped carriers does not occur

quickly enough to keep up with the expanding depletion re-

gion. A significant percentage (perhaps a majority) of carri-

ers remain briefly trapped in the high-field depletion region

J. Appl. Phys., Vol. 80, No. 2, 15 July 1996 P.G. Neudeck and C. Fazi 1223
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dopants and deep levels are emitting carriers into the high-field junction

depletion region.

at t=0 T [Fig. 7(b)]. These carriers thermally emit into the

high-field depletion region at the worst time [t>0, Fig. 7(c)].

The injection of carriers into the high-field region produces

an undesired current surge that fails the diode.

At high enough bias levels, this mechanism is inferred to
be a current filamentation mechanism, since the devices

failed as short circuits and post failure inspections showed

highly localized damage within the bulk diode area (Fig. 5).
As discussed by Ridley 13 and others, 14 current filamentation

occurs when a semiconductor exhibits S-shaped negative dif-

ferential conductivity (SNDC). If a semiconductor material

has a negative temperature coefficient of breakdown voltage,

any localized temperature increase that occurs within the
breakdown-biased junction will cause a localized current in-

crease or hot spot. The current increase feeds back and

causes even more localized and intensified heating. The pro-

cess escalates until the material very rapidly overheats and

fails catastrophically by shorting the junction. The notion
that carrier emission from deep levels and frozen-out dopants

can lead to SNDC, negative temperature coefficient of break-

down, and catastrophic current filamentation failure has been
previously put forth in the literature. 13'14'2°-22 Since carrier

emission increases with temperature, it is possible to envi-

sion filamentation when trapped carriers emit directly into

the high-field region of a near-breakdown biased junction.

Localized heating at a hot spot would cause remaining

trapped carriers to emit even faster, causing more current,

and impact ionization at a junction hot spot. Even though a

more rigorous examination of this phenomenon is clearly in
order (such as high-field transport modeling), this initial

speculative hypothesis can nevertheless serve as a starting

point for more comprehensive investigations into the ob-
served fast-risetime pulse breakdown instabilities.

The catastrophic filamentation failure mechanism does

not take place in the steady state case, because the bias is

gradually increased over a long enough time period (-16 ms
on the curve tracer) that most carrier ionization takes place in

a gradual fashion near the low-field edge of the expanding

depletion region in relative sync with the bias signal. This

more orderly and gradual discharge of trapped carriers gen-

erates negligible current and heating, so that the device re-

tains its good low-leakage characteristics shown on the curve
tracer until the dc breakdown voltage is reached. The fact
that the diodes were so well-behaved when dc tested sug-

gests that leakage effects from crystal defects and junction

perimeter sidewalls may not be major factors in the anoma-

lous pulsed-bias breakdown.

C. Prospects for reliably stable SiC breakdown

For the proposed physical mechanisms discussed above

as the primary cause of the observed unstable SiC break-

down behavior, the instability may not necessarily be inher-
ent to all, SiC devices. The elimination of trapped carrier

emission processes should result in reliable behavior from

devices when they are free of crystal defects. Carrier emis-

sion from deep levels will hopefully be eliminated by im-

provements to epitaxial crystal growth technology. Carrier

emission from dopant sites may also need to be minimized

by choosing dopants with the lowest ionization energy lev-

els. Since conventional silicon dopants are completely ion-

ized over the entire U.S. military specification temperature

range (-55 to + 125 °C), carrier emission from dopant sites

has never been an important mechanism in the high-field

behavior silicon junctions. However, in wide-bandgap semi-

conductors such as 4H- and 6H-SiC, a significant percentage

of dopants are frozen out around room temperature, so that

carrier emission from dopant sites can be the cause of un-
stable breakdown behavior. Since percent ionization in-

creases as doping decreases, SiC devices with lighter dop-

ings than those employed in this work are more likely to
exhibit stable reverse breakdown behavior, if crystal defects

and deep levels are sufficiently low.
We are undertaking further experimental and theoretical

studies to quantitatively ascertain the conditions under which

1224 J. Appl. Phys., Vol. 80, No. 2, 15July 1996 P.G. Neudeck and C. Fazi



4H- and 6H-SiC junctions exhibit stable reverse breakdown
behavior.

IV. CONCLUSION

The importance of this work is best summarized by the

contrasting pulse-testing results between silicon and SiC di-
odes that exhibit comparable breakdown voltages of --150 V

when dc characterized (Sec. II C). When subjected to fast-

risetime bias pulses, the SiC diode fails before a pulse am-

plitude of 100 V is reached, while the silicon diode can with-

stand pulse amplitudes of over 225 V. We have shown that
the safe reverse voltage rating of a SiC rectifier should not be

solely based upon its curve-tracer measured reverse knee

voltage. If SiC power devices are to replace silicon devices

in power system circuits, the unreliable breakdown behavior

reported in this article must be eliminated. The regime over

which SiC power devices exhibit stable breakdown proper-

ties will likely be significantly smaller than the temperature-

doping space over which silicon power devices are known to
be stable. While a smaller doping-temperature design region

should not prevent the realization of SiC power electronics,
it is an additional reliability constraint that must be taken

into account when designing SiC-based power systems.
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